It's all about saving your money

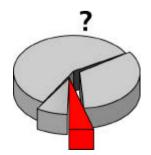
Power Factor Correction and Energy Management

FRAKO Kondensatoren- und Anlagenbau GmbH

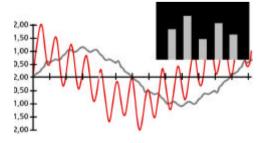
Teningen, Germany

Asian Customer Information Seminar Sept. 1999

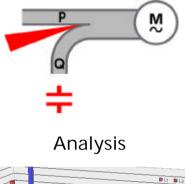
FRAKO Energy Management System (EMS)

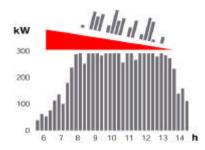

- Jochen M. Braun
- FRAKO Kondensatoren- und Anlagenbau GmbH
- Head of Business Unit Energy Management

FRAKO Program Segments



Cost Allocation





Energy Management

Power Factor Correction

Maximum Demand Control

FRAKO Energie Management System (EMS)

- 1. Basics of Energy Management (EM)
- 2. Mains Monitoring
- 3. Maximum Demand Control (Load Shedding)
- 4. Power Factor Correction with FRAKO EMS
- 5. Additional Components and Software
- 6. FRAKO Energy Management Sets
 - Mains Monitoring Set
 - Maximum Demand Set
 - Maximum Demand Set +
- 7. Integrated FRAKO Energy Management
 - Various installations utilizing the FRAKO Starkstrombus™ Mains Monitoring / Load Shedding / Metering electrical energy and other energies and media
- 8. Questions & Answers

- Different meanings of term "Energy Management" depending on group of people where it is used:
- Persons involved in maximum demand control use it to name their products
- Persons involved in building management systems use it mainly for intelligent heating, cooling and ventilation systems
- Persons involved in FRAKO products use it mainly for the control and reduction of electrical energy cost
- There is a common understanding between these three versions.

- What exactly is energy management?
 "Energy Management" has become a frequently used term in recent years.
- Since we could not find a unique definition, we propose the following:
 - The function of EM is fulfilled when

1. data relevant for energy consumption, cost or power quality are measured and collected which

2. are then used as input for monitoring, signaling, and/or controlling apparatus for reduction of energy consumption or cost and assuring power quality.

• Purpose of FRAKO Energy Management Systems:

Help our customers save money.

- How FRAKO Energy Management System helps customers save money:
 - Reducing electricity bill
 - Increasing electrical power quality
 - Reducing costs for resources besides electricity

• Increasing quality of electrical power

The mains quality becomes an increasingly important issue for power engineering.

Power quality problems can lead to very costly failures and destruction of electrical equipment and switchgear.

FRAKO Energy Management System continuously monitors mains conditions and reports immediately when some parameter are out of bounds - much less costly than waiting for a blown fuse or production loss.

• Reducing electricity bills

Electricity bills for industrial & commercial customers consist of three parts:

- active work (kWh)
- reactive work (kVArh)
- maximum demand (kW)
- Each of these parts can be reduced with FRAKO Energy Management System

• Electricity bill - active work (kWh)

All customers need to pay for active work. The energy consumed is measured by a meter and a price per kWh is charged.

A useful means of reducing electrical energy consumption is comprehensive monitoring:

For this purpose, one of the domains of FRAKO Energy Management System is monitoring of active work.

• Electricity bill - maximum demand (kW) (1)

Dimensions of cables and transformers depend on maximum demand. The value charged is determined by averaging the power drawn over fixed periods of mostly 30 minutes.

Costs vary from 17.3 to 25.7 RM p.month depending on the local situation.

• Electricity bill - maximum demand (kW) (2)

These costs can be considerably reduced, when trend calculation during each period is carried out.

In case of high forecast of mean power exceeding the maximum demand, loads can be shed in order to

reduce power drawn in running measuring period, which has been perceived as critical.

FRAKO Energy Management Systems include instruments for such a purpose.

• Electricity bill - reactive work (kVArh)

Current carried by mains bus not only carries flow of active work but also that of reactive work.

Here zero net energy is being consumed. Reactive energy is energy oscillating between consumer and utility.

• This component calls for larger cables and bigger transformers, leading to increased costs.

For this reason reactive work is also being charged by the utility.

FRAKO Capacitors Banks can easily reduce these charges to zero and can be operated within the FRAKO EMS.

• Reducing costs of resources other than electricity

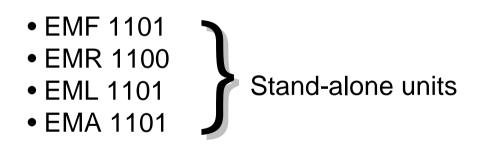
FRAKO Energy Management System can also monitor consumption of gas, water, pressurized air, fuel, etc...

• Modularity

FRAKO Energy Management System includes a stand-alone instrument for each of the four domains:

•	Mains monitoring	EMA 1101
•	Maximum demand control	EML 1101
•	Energy metering	EMF 1101, EMKI 1101/1103
•	Power factor correction	EMR 1100

Each instrument is equipped with RS 485 interface for connecting to FRAKO Power Bus and can be integrated into FRAKO Energy Management System.


- FRAKO Starkstrombus[™] (Power Bus)
 - Two wires, twisted and shielded pair
 - Transfer rate: 76.8 kbit/sec
 - Max distance covered: approx. 5 km
 - Master slave system:
 - Max 8 masters
 - Max 116 slaves
- Stand-alone units mentioned are slaves: EMF 1101, EMR 1100, EML 1101 and EMA 1101

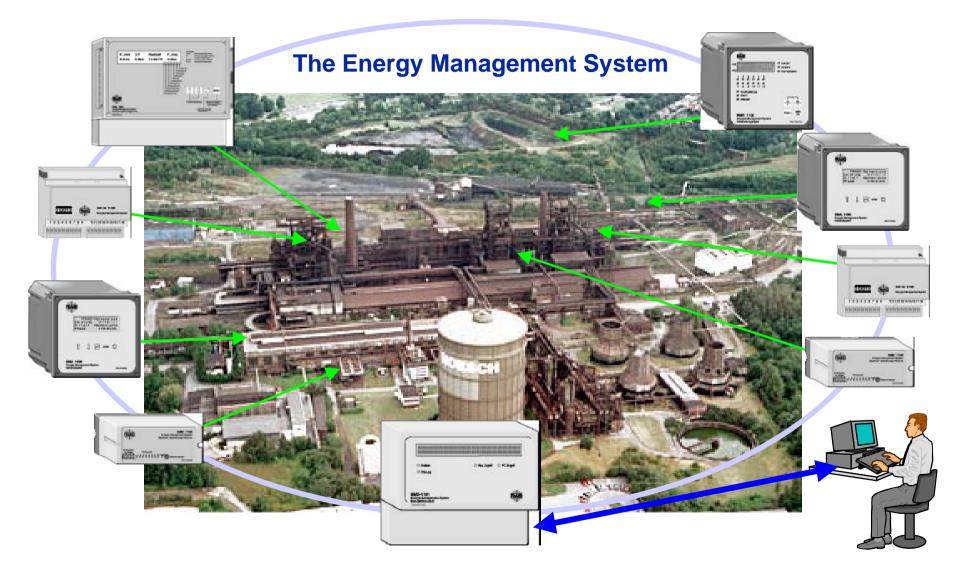
- Masters and Slaves
 - Masters:

Bus Central Units Communication Processor EMZ 1000, ... 1102 EMP 1100

- Slaves:

- What do masters EMZ and EMP do?
 - Request actual data from slaves for further processing
 - Serve as interface between

FRAKO Power Bus (RS 485) and PC, PLC or BMS (RS 232)



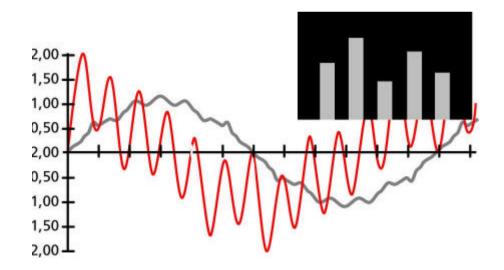
• Supplementary functions provided by

FRAKO Energy Management System :

- State and alarm reports from other systems can be handled
- Analog signals (0 or 4 to 20 mA) can be included in display of EM-data on screen

Energy Management

FRAKO Energie Management System (EMS)



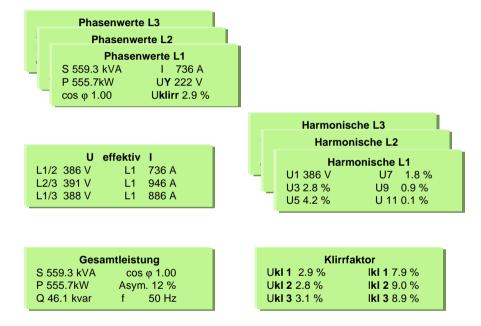
- 1. Basics of Energy Management (EM)
- 2. Mains Monitoring
- 3. Maximum Demand Control (Load Shedding)
- 4. Power Factor Correction with FRAKO EMS
- 5. Additional Components and Software
- 6. FRAKO Energy Management Sets
 - Mains Monitoring Set
 - Maximum Demand Set
 - Maximum Demand Set +
- 7. Integrated FRAKO Energy Management
 - Various installations utilizing the FRAKO Starkstrombus™ Mains Monitoring / Load Shedding / Metering electrical energy and other energies and media
- 8. Questions & Answers

2. Mains Monitoring

Providing qualified information for various purposes

Energy Management

- Objectives:
 - Prevent unexpected power failures
 - Prevent equipment failure due to high percentage of harmonics
 - Prevent failure and destruction of equipment due to voltage or current overloading
 - Get early information on bad power quality



- Functions:
 - 3-phase measurement V, I, phi
 - 3-phases calculation of P, Q,
 S
 - Monitoring of harmonics, Udf, Idf
 - Active and reactive work meters
 - Measurement of two temperatures
 - LCD 4 x 20 characters
 - Contact for tariff switching
 - Alarm contact

All relevant measuring data are registered.

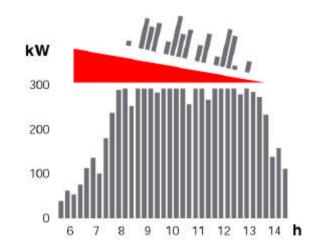
Analyses mains conditions; monitors and prevents breakdowns.

• Two examples for application:

Central Institute for Calibration in Germany: 15 EMZ 1102 with up to 18 EMA 1101 and 5 energy meters

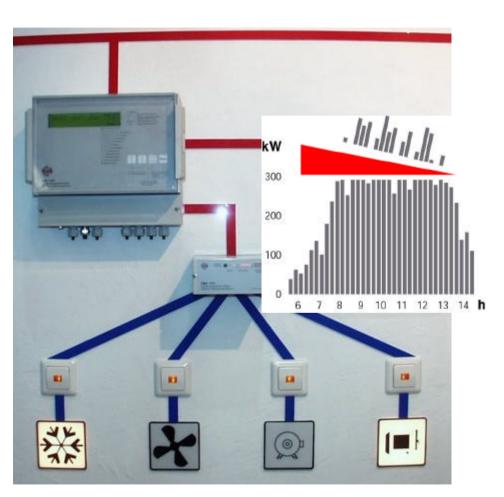
Huge recreation area in northern Germany: 1 EMZ 1102, 1 EML 1101 + 10 EMD 1101, 5 EMA 1101 and 50 energy meters

FRAKO Energie Management System (EMS)

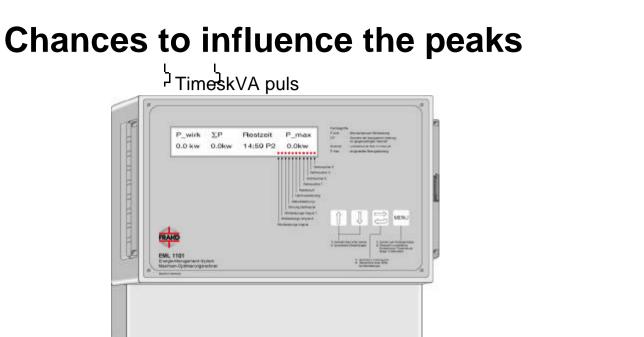


- 1. Basics of Energy Management (EM)
- 2. Mains Monitoring
- 3. Maximum Demand Control (Load Shedding)
- 4. Power Factor Correction with FRAKO EMS
- 5. Additional Components and Software
- 6. FRAKO Energy Management Sets
 - Mains Monitoring Set
 - Maximum Demand Set
 - Maximum Demand Set +
- 7. Integrated FRAKO Energy Management
 - Various installations utilizing the FRAKO Starkstrombus™ Mains Monitoring / Load Shedding / Metering electrical energy and other energies and media
- 8. Questions & Answers

3. Maximum Demand Control

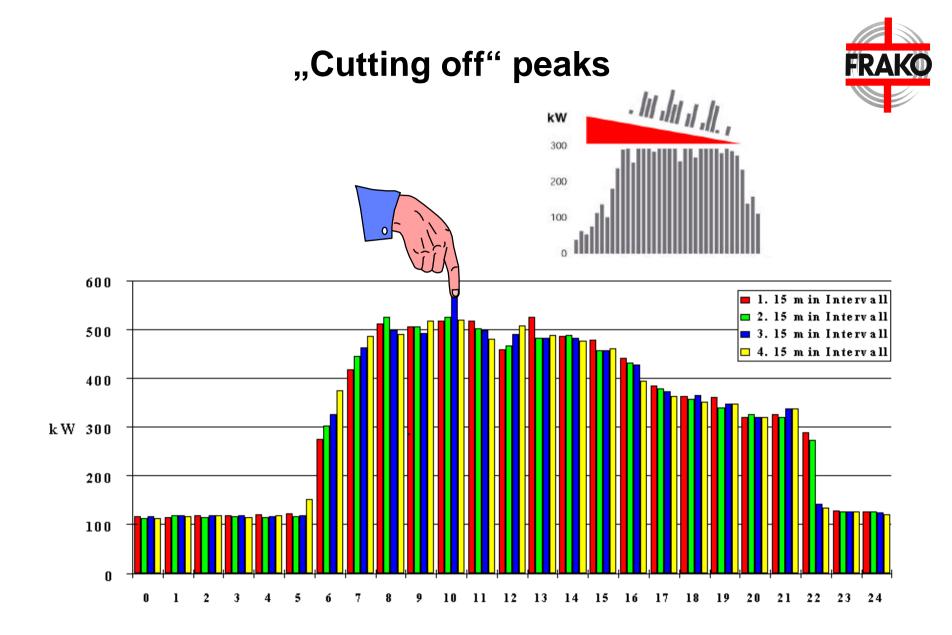

Load Shedding

Maximum Demand Control


 Cost reduction preventing power surges by shedding loads within defined measuring periods

Mode of determining charges for maximum demand

- A kW-meter measures the highest average value of kW, that occurs each month.
- Each month is subdivided into approximately 1500 measuring periods of 30 minutes.
- The average value of kW is taken over each measuring period of 30 min.
- The highest average value of kW that has occurred during a month is then charged.
- Costs vary from 17.3 to 25.7 RM p. month depending on the local situation.

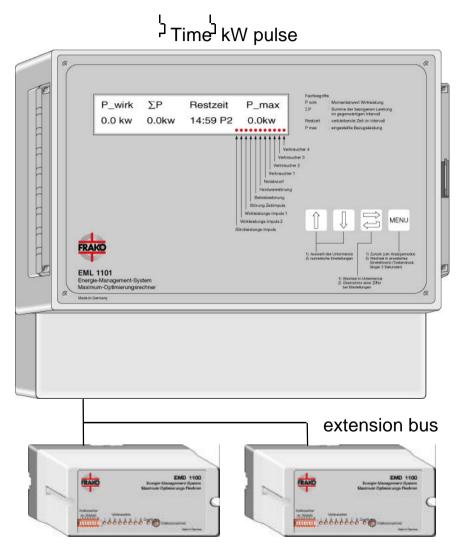


- The fact that average values of kW are charged, gives the customer enough time to keep track of the accumulated kWh that have been used up in the current measuring period.
- On this basis the customer can decide whether loads should be shed in order not to exceed a desired value of maximum demand.

This is the basic function which EML 1101 provides:

– Minimum input:	time pulse and kW pulse	
– Output:	relays, that switch off loads	
	Energy Management	

Maximum Demand Controller EML 1101



^L Time ^J kW pulse							
EM	P_wirk ΣP 0.0 kw 0.0kw		P_max 0.0kw		Luming tevol tevol ung MENU till Adjerendo defmal, fondukt		
	AKO Energie Manageree	B 1100 Br Again in Andrew Marine			sion bus		

- Functions:
 - Operation software
 - PC/printer interface
 - 4 switch-off channels
 - 4 application profiles
 - Emergency dump
 - Sub-bus for extension modules
 - Connection for kW pulse and time pulse
 - Help menu guidance
 - Bus connection (optional)

Maximum Demand Controller EML 1101

Maximum of 84 control channels

• Functions:

- Maximum savings via trend calculation
- Direct configuration or via laptop
- Min. input: time and active work pulse
- Modular setup
- 4 + 1 relays (250 VAC, 4 A)
- 2 contacts for 4 profiles
- 2 Alarm contacts

Display of Maximum Demand relevant Data

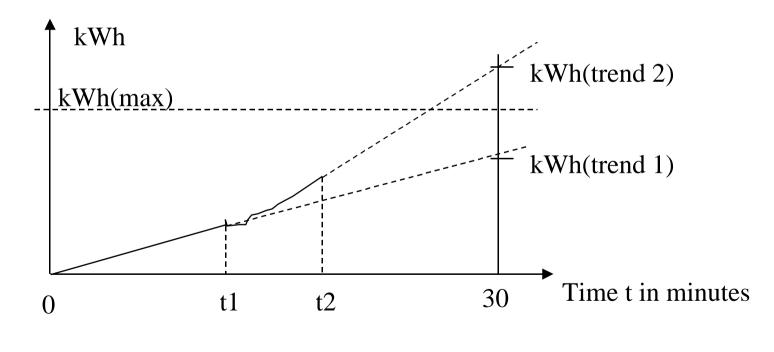
	le Verb	raucher	darstellen [Notab	wurf inv	ertieren				Pro	fil	1	
Verbr.	Station	Kanal in	Verbrauchername	Prio-	Gruppe	Leistung	Min Ab	Max Ab	Min Ein	Verz.	Zu-	Aus-	Γ
Nr.	Nr.	Station		rität		in KVV	Min.	Min.	Min.	Sek.	stand	gang	
1	ÉML	1	Impraegnier-Ofen 1	12	0	30,0	2	20	1	0	REG	Ö	
2	EML	2	Kanal 2 EML	1	0	40,0	1			0	REG	Ö	
3	EML	3	Zinkspritzanlage	2	0	40,0	1			0	REG	Ö	
4	EML	4	Fernschalter	1	0	0,0	10			0	REG	Ö	
5	1	1	Impraegnier-Ofen 5	12	0	22,5	2	20	1	0	REG	Ö	1
6	1	2	Impraegnier-Ofen 6	12	0	30,0	2	20	1	0	REG	Ö	1
7	1	3	Impraegnier-Ofen 7	12	0	30,0	2	20	1	0	DEA	Ä	1
8	1	4	Impraegnier-Ofen 8	12	0	30,0	2	20	1	mun D:	\FRAK	0\0PT	-DI
9	1	5	Impraegnier-Ofen 9	12	0	30,0	2	20	1	Been	den <u>M</u> i	onitor I	EML
10	1	6	Impraegnier-Ofen 10	12	0	30,0	2	20	1	EM	IL:		
11	1	7	Impraegnier-Ofen 11	12	0	22,5	2	20	1	Т	ир: 🗌	EML	11(
12	1	8	Deckelheizung	14	0	12,6	5	20	2		· ·	LIVIL	
13	2	1	Feinvakuum-Pumpen	2	0	15,4	2	(access)		Se	erienNr:		000
14	2	2	Dachventilatoren	19	0	8,0	4	20	2				-
18	2	6	Klima Wickelei	18	0	6,0	10	15	10	H	DM-Ver	sion:	

enden <u>M</u> onitor EML- <u>K</u> onfigura	ation <u>D</u> rucken ⊻erbindung <u>E</u> i	nstellunge	n <u>H</u> ilfe	
EML:	Alarme:	Schal	tkanäle:	
Typ: EML1101	OK Notmod. aktiv	EIN	Notabwurfrelais	
SerienNr: 000000	OK Pkum. > Pmax.	EIN	Impraegnier-Ofen 1	
	OK Pwirk > Pspitz.	EIN	Kanal 2 EML	
ROM-Version: 1.45	OK Cos(ph) < Soll.	EIN	Zinkspritzanlage	
Zeit:	Störungen:	AUS	Fernschalter	
Bestzeit 08:19 Sync	OK EMD inaktiv	EIN	Impraegnier-Ofen 5	
Restzeit 08:19 Zeit		EIN	Impraegnier-Ofen 6	
Zeit EML 21.01.99 22:36:41	OK Kein Zeitimp.	EIN	Impraegnier-Ofen 7	
	OK Kein Wirkimp.	EIN	Impraegnier-Ofen 8	
deßwerte: Pwirk Pkum.	P kum. alt Cos(phi)	EIN	Impraegnier-Ofen 9	
357,0 kW 10,6 kW	500,0 kW 1,00	EIN	Impraegnier-Ofen 10	
331,0 KYY 10,0 KYY	300,0 KYY 1,00	EIN	Impraegnier-Ofen 11	
Grenzwerte:	Prognose:	EIN	Deckelheizung	
P spitz. P max. Co 800.0 kW 284.0 kW	s(phi) min. Trendleistung	EIN	Feinvakuum-Pumpen	
	0,70 480.0 KW	FIN	Dachventilatoren	

Maximum Demand Controller EML 1101

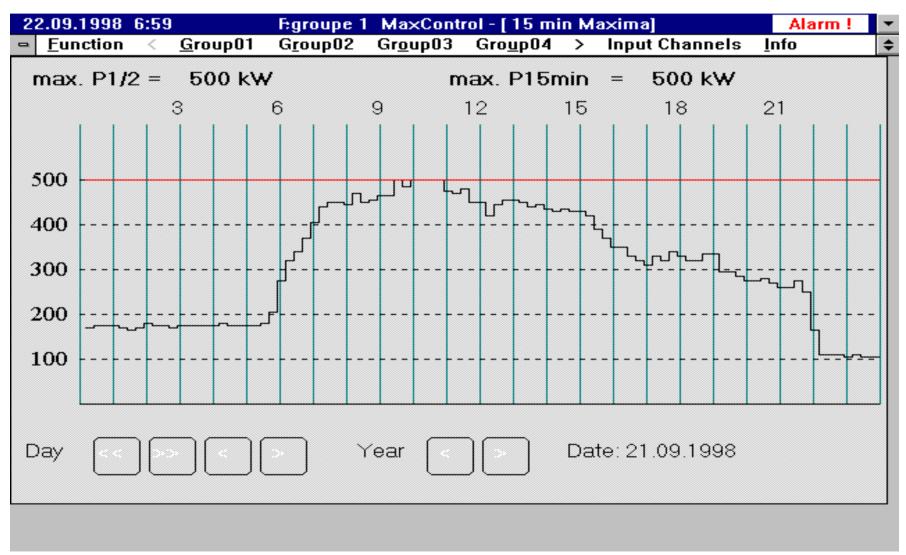
- Individual settings for each channel:
 - Rated Power/Peak Consumption
 - Priority
 - Min. OFF
 - Max. OFF
 - Min. ON
 - Time/Power priority
 - Output (NC/NO)

... limits switch-off times for each consumer to a sustainable degree.


• Basic settings:

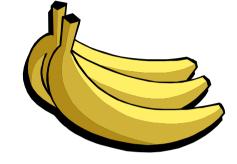
Target maximum demand, pulse rates, CT-ratio, VT-ratio, number of profiles, number of add-on stations, number of kW-meters connected, etc...

Basic facts about algorithm implemented in EML 1101:



- kW averaged over 30 minutes = kWh registered during 30 minutes mutiplied by 2.
- The maximum value of average kW is related to maximum value of kWh(max) accumulated during 30 minutes.

Example for a limited profile



Example of Food Storage Building

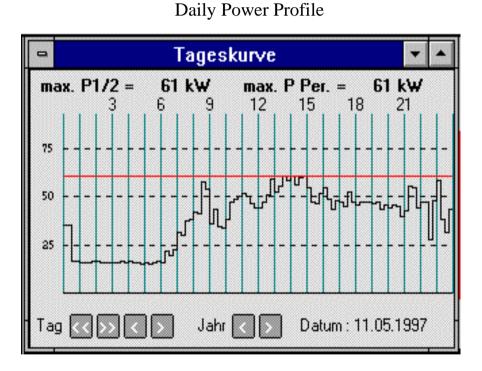
Before Optimizing After Optimizing 180 kW

120 kW

📰 Tag	geskurve)					_ 🗆	×
max.	P1/2 =	122 6	kW 9	max. 12	P Per 15	. =	123 kW 21	
125 100 75 - 50 25						• • • • • • • • • • • • • • • • • • •	·	
Tag [Jahr		Dati	I um : 30	.05.1997	<u> </u> ,

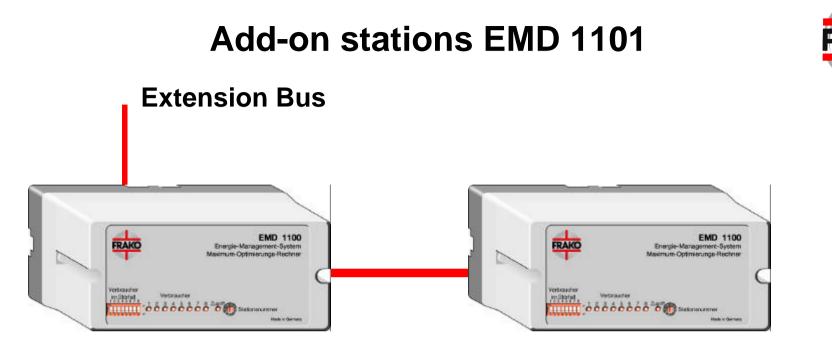
Daily Demand

Reduction:

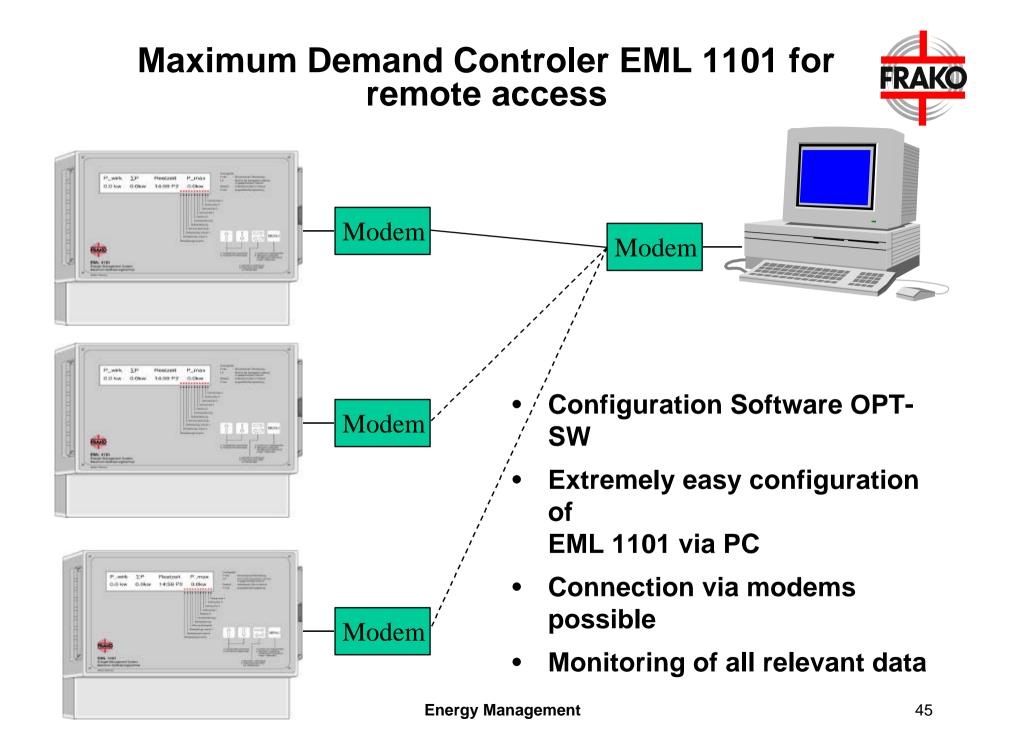


Example of Hotel Ludinmühle, Freiburg

• Consumers:


Day / Year / Date:

- Kitchen range
- Double-boiler
- Deep fat fryer
- Frying plate
- Swimming pool pumps
- Sauna furnace
- Steam bath


Switch-off Options in various Areas

Hotel, Catering	Brewing	Butchering	Industry
Washing machine	Cooling	Cooling	Ventilation systems
Dryer	Ventilation	Passing machine	Light e.g. 1/3
Ironing machine	Water preparation	Cutter	Compressed air
Gutter heating	Cylinder pump	Baking cabinets	Canteen
Refrigeration	CIP cleaning	Smoking chamber	Drying cabinets
Double-boiler		High-pressure cleaner	Warming cabinets
Plate warmer		Heating	Air conditioning systems
Baking ovens		Washing machine	
Frying pan		Dryer	
Deep fat fryer			
Tilting-type frying pan			
Kitchen range			
Grill			
Ventilation			

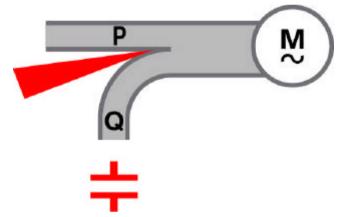
- 8 relays (250 VAC, 4 A)
- 8 LEDs
- 8 dip switches
- RS 485 interface for connecting to extension bus

Maximum Demand Controler EML 1101

	لم لي Time ^L kW puls
EN EN	P_wirk <u>P</u> Restzeit P_max 0.0 kw 0.0kw 14:59 P2 0.0kw
	extension bus

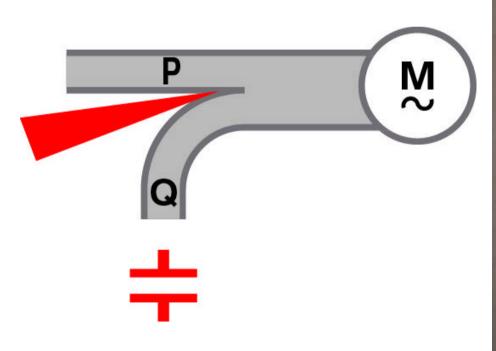
- First steps in planning of installation of an EML 1101:
- Inspect electricity bill
- Create load list with load settings
- Possibly measure daily power curve
- Estimate time of payback of investment

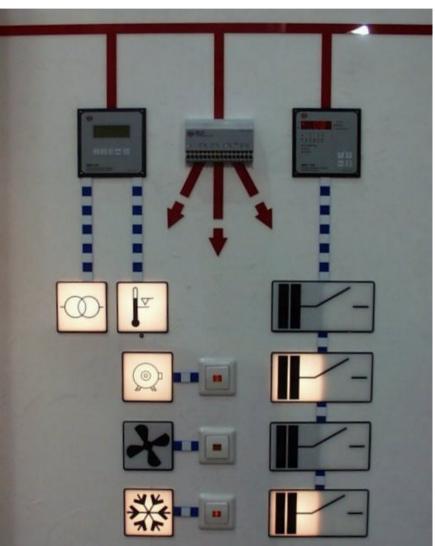
FRAKO Energie Management System (EMS)



- 1. Basics of Energy Management (EM)
- 2. Mains Monitoring
- 3. Maximum Demand Control (Load Shedding)
- 4. Power Factor Correction with FRAKO EMS
- 5. Additional Components and Software
- 6. FRAKO Energy Management Sets
 - Mains Monitoring Set
 - Maximum Demand Set
 - Maximum Demand Set +
- 7. Integrated FRAKO Energy Management
 - Various installations utilizing the FRAKO Starkstrombus™ Mains Monitoring / Load Shedding / Metering electrical energy and other energies and media
- 8. Questions & Answers

4. Power Factor Correction with FRAKO EMS

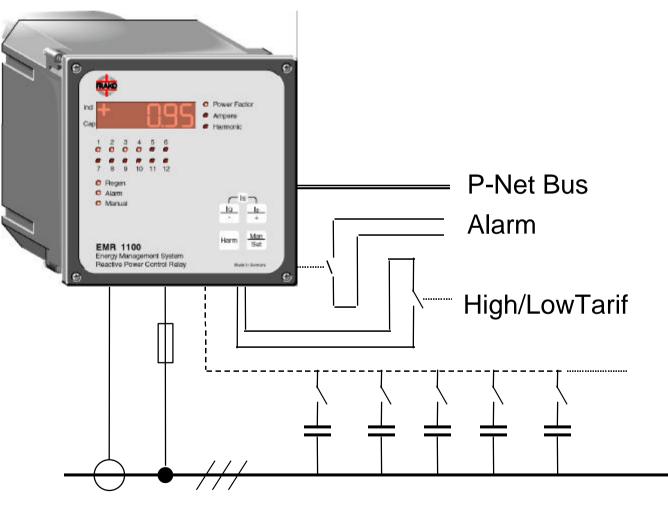

Utilizing FRAKO Capacitors and Power Factor Relays

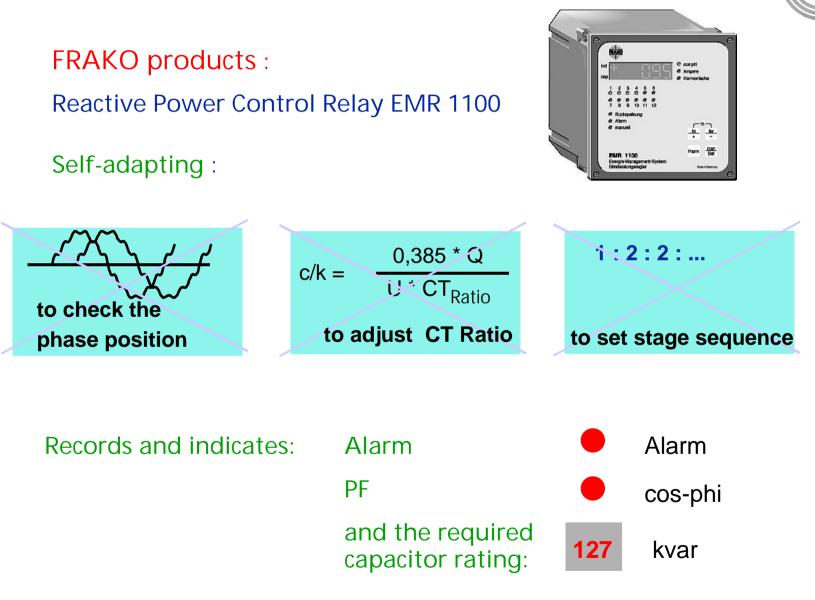


Power Factor Correction and Mains Monitoring

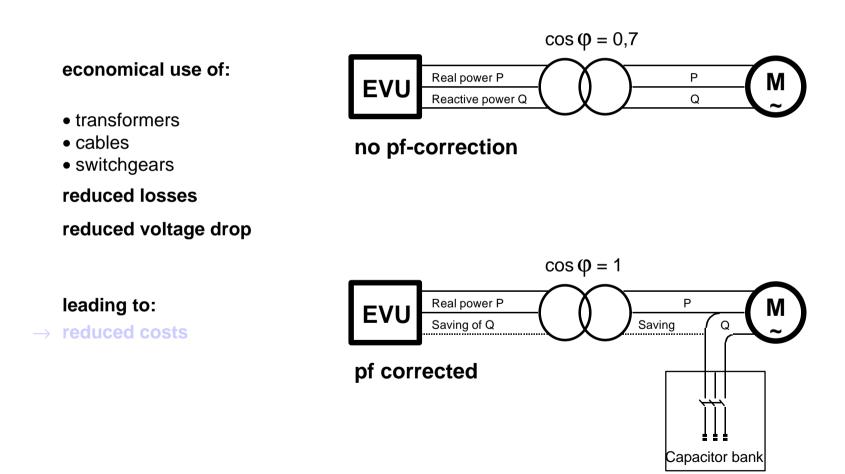
- Complete reduction
 of reactive power costs
- Monitoring of mains parameters

Reactive Power Relay EMR 1100



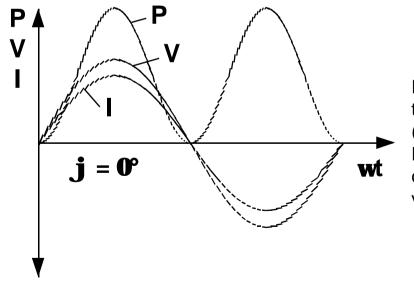

- Automatic identification of phases orientation
- Monitoring of harmonics
- Irms-monitoring
- Four-quadrant control
- Switching cycle counters
- Individual control of discharge time for each stage

Reactive Power Relay EMR 1100



Reactive Power Control Relay EMR 1100

Why power factor correction?



Real Power

Non-reactive loads without inductive and capacitive components, such as electric heaters, give rise to simultaneous zero passages of voltage and current. Voltage and current are in phase. The phase shift φ is zero: $\varphi = 0^{\circ}$.

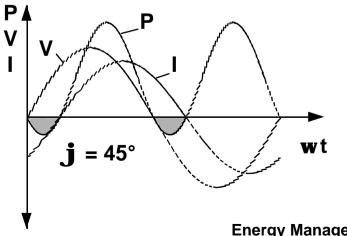
Voltage, current and power at non reactive loads ($\phi = 0^{\circ}$)

Real power is the component that is transformed into non-electrical power (e.g. heat, light, mechanical power). For non-reactive loads the power is being calculated as product of r.m.s.-values of voltage and current.

Energy Management

Real and reactive power

Practically loads are not purely non-reactive, but there is a reactive component involved. This applies for all loads thatdepend on magnetic fields, e.g. asynchronous motors, chokes and transformers. Rectifiers also consume reactive power.


The energy for generating the magnetic field and its polarity reversal oscillates between generator and load.

Zero crossings of voltage and current do not occur at the same time. The phase shift φ is different from 0°.

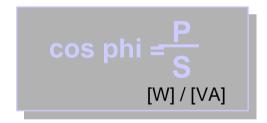
Current lags for inductive and leads for capacitive loads.

The momentary values of P can be positive and negative, reflecting an oscillating part of energy flow.

Voltage, current and power for load with non-inductive and inductive component ($\varphi = 45^{\circ}$):

An example with phase shift $\phi = 45^{\circ}$ P(t) is temporarily negative. The real power is given by:

> [W] [V] [A]

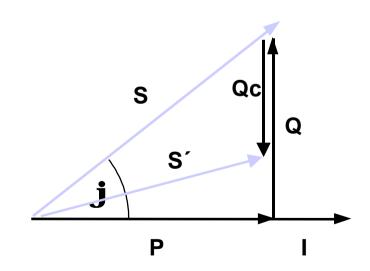


Power factor cos phi

The cosine of the phase shift between voltage and current relates active and apparent components of power P, work W and current I.

It is called power factor.

The type plate of electrical machines normally carries the power factor at full load



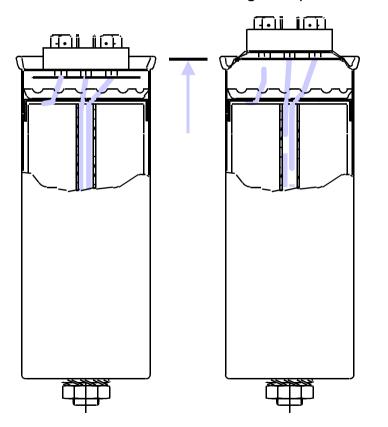
Apparent power

The apparent power S is the all-important parameter for rating loads of electical networks. Generators, transformers, switchboards, fuses and cross sections of cables have to be designed such that they can handle the maximum apparent power.

Apparent power is the product of r.m.s. voltage and r.m.s. current.

Apparent, active and reactive power:

Apparent power is the geometric sum of active and reactive power:


S = ⁻	/ P ²		
[VA]	[W]	[VAr]	

Overpressure Disconnector

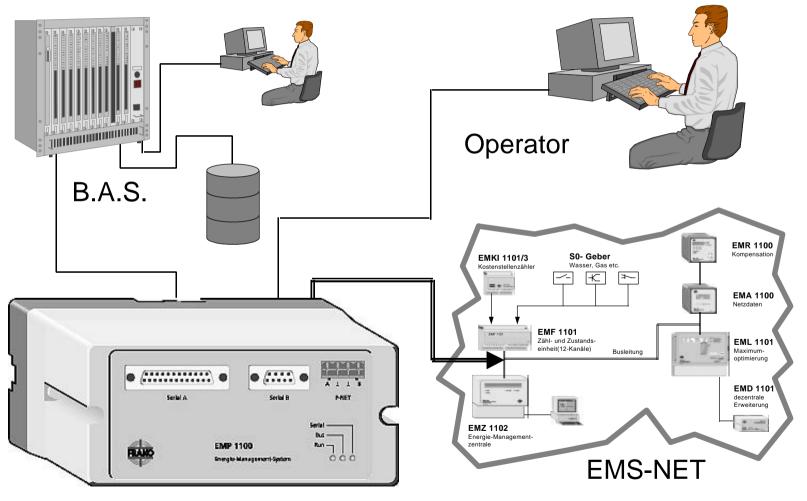
Highest possible safety standard is met only when in addition to a very reliable normal functioning there is a device that

- reacts to inner build up of pressure
- disconnects the winding from the mains without leading to rupture of the casing

For this purpose FRAKO uses a seamed lid with a membrane function.

With an overpressure of three bars, the lid pushes 10mm upwards and disconnects the winding from the mains without arcing back.

FRAKO Energie Management System (EMS)


- 1. Basics of Energy Management (EM)
- 2. Mains Monitoring
- 3. Maximum Demand Control (Load Shedding)
- 4. Power Factor Correction with FRAKO EMS
- 5. Additional Components and Software
- 6. FRAKO Energy Management Sets
 - Mains Monitoring Set
 - Maximum Demand Set
 - Maximum Demand Set +
- 7. Integrated FRAKO Energy Management
 - Various installations utilizing the FRAKO Starkstrombus™ Mains Monitoring / Load Shedding / Metering electrical energy and other energies and media
- 8. Questions & Answers

5. Additional Components and Software

Bus Interface EMP 1100

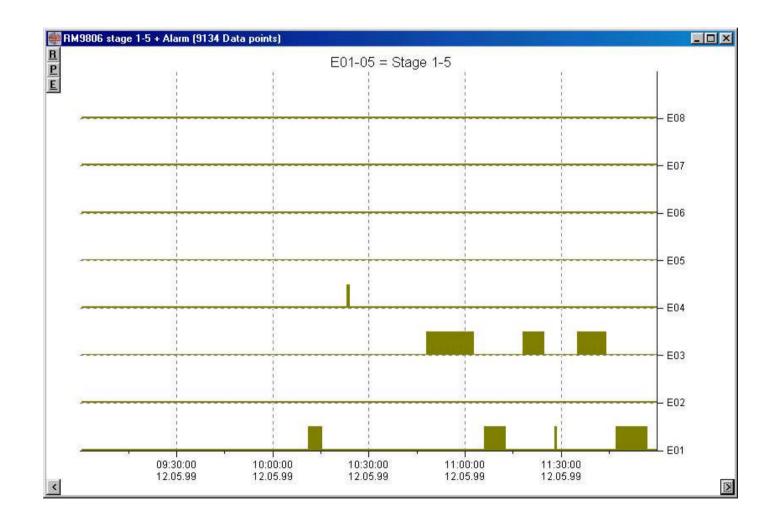
Energy Management

Visualisation Software EM-Graph Diagram Settings

<u>D</u> iagram settings	Display	<u>G</u> eneral Settings	<u>U</u> tilities
nstrument	Available data	Selected data	
ema1101.lbr emf1101.lbr emk1100.lbr emr1100.lbr Bus addr. 30 * nterval Scan 15 * s Refresh 15 * s Averaging Save data record after 1 * Scan	Counter st06 Counter st07 Counter st08 Counter st09 Counter st10 Counter st11 Counter st12 H05 H07 H11	Y-Min -200 🖨 A 🔽 Display Redra <u>w</u>	nct 50Hz t ph1 ph2
4D4-6 (Power EML (EMF	PF EMR current RM9806	stage 1-5 + Alarm/	
New diagram	Delete diagra <u>m</u>		
ata <u>N</u> ew Load	Save Recording	New start <u>R</u> estart Prog	ram <u>H</u> elp E

Visualisation Software EM-Graph Display Mode

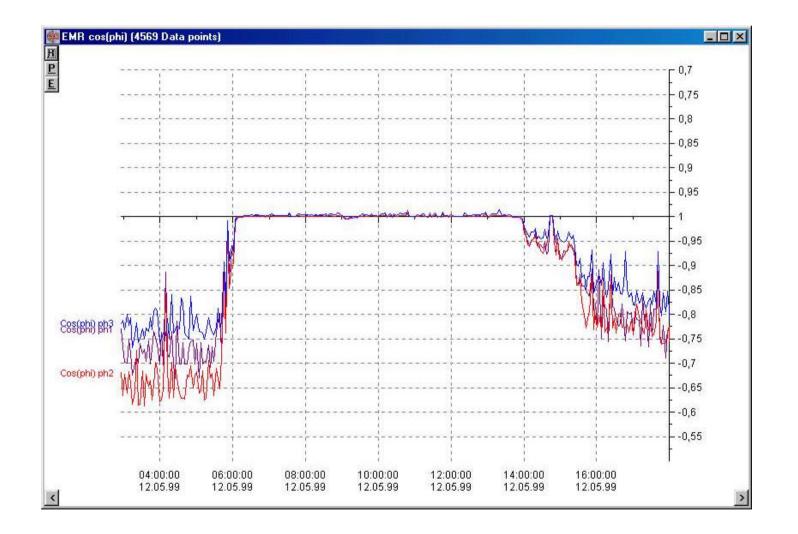
Diagram settings	Display		Ceneral Settings	<u>U</u> tilities
Status				
	C	ursor me	asurement	
				- 7
Relais EML, EMD1-3 , Aları	and the second se		EMD4-6	Cursor Values
EML1101T(19): Relais EM	L(19) 001000	111	EML1101T(19): Relays EMD 4	11000000
EML1101T(19): Relais EM	D 1(19 111111	11	EML1101T(19): Relays EMD 5	5 00110111
EML1101T(19): Relais EM	D 2(19) 011111	10	EML1101T(19): Relays EMD (6 00000101
EML1101T(19): Relais EM	D 3(19) 000001	11	-	
EML1101T(19): Alarmflag *	1(19) 000000)00		
EML1101T(19): Alarmflag 2	2(19) 000000)01		
Power EML	Cursor Va	alues	EMR PF	Cursor Values
EML1101T(19): P act	232,9	and the second se	EMR1100(52): Cos(phi)	-0,999
EML1101T(19): P accum	225.8	1001000	EMR1100(52): Cos(phi) target	
	240k	w [FMA1101(50) Cos(phi) ph1	1
EML1101T(19): P max	240k		EMA1101(50): Cos(phi) ph1 EMA1101(50): Cos(phi) ph2	the second second
	240k 223,7 240,8	kW	EMA1101(50): Cos(phi) ph1 EMA1101(50): Cos(phi) ph2 EMA1101(50): Cos(phi) ph3	1 -0,999 0,999
EML1101T(19): P max EML1101T(19): P rem	223,7	kW kW	EMA1101(50): Cos(phi) ph2	-0,999
EML1101T(19): P max EML1101T(19): P rem EML1101T(19): P left	223,71 240,8 Display rang	kW kW	EMA1101(50): Cos(phi) ph2 EMA1101(50): Cos(phi) ph3	-0,999 0,999
EML1101T(19): P max EML1101T(19): P rem EML1101T(19): P left Display until	223,71 240,8 Display rang Store	ikW ikW je	EMA1101(50): Cos(phi) ph2 EMA1101(50): Cos(phi) ph3 Jump	-0,999 0,999 All diagra
EML1101T(19): P max EML1101T(19): P rem EML1101T(19): P left Display until Current time Day Hrs Min	223,71 240,8 Display rang Store	k₩ k₩ <u>Becall</u> Hrs	EMA1101(50): Cos(phi) ph2 EMA1101(50): Cos(phi) ph3 Jump Min Cursor-Time	-0,999 0,999 All diagra >1
EML1101T(19): P max EML1101T(19): P rem EML1101T(19): P left Display until current time	223,71 240,8 Display rang Store	k₩ k₩ <u>Becall</u> Hrs	EMA1101(50): Cos(phi) ph2 EMA1101(50): Cos(phi) ph3 Jump Min Cursor-Time	-0,999 0,999 All diagra
EML1101T(19): P max EML1101T(19): P rem EML110T(19): P left Display until current time Day + Hrs + Min	223,71 240,8 Display rang Store	k₩ k₩ <u>Becall</u> Hrs	EMA1101(50): Cos(phi) ph2 EMA1101(50): Cos(phi) ph3 Jump Min Cursor-Time	-0,999 0,999 All diagra <u>D</u> isplay


Visualisation Software EM-Graph Current Analysis

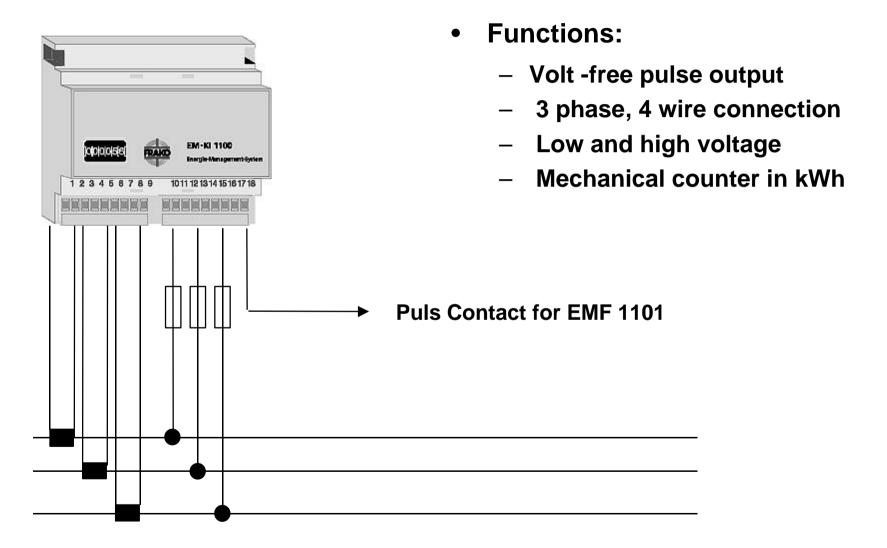
Visualisation Software EM-Graph Reactive Power Stages

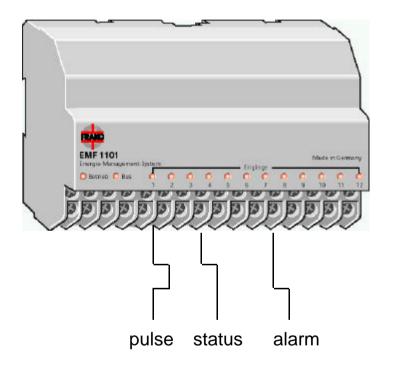
Visualisation Software EM-Graph Utilities Screen

Diagram settings	Dis <u>p</u> lay	<u>G</u> eneral Settings	<u>U</u> tilities
Status			
	Sea	arch is stopped!	
Search for EM instruments		Edit recording	1
Start sear <u>c</u> h		Current section as new measurement	
EML V 203 SN 000123 at A	10.02	Delete current section	
EMR V 192 SN 002218 at A EMA V 104 SN 000000 at A	6.92	Delete measurement completely	
	, Line and		

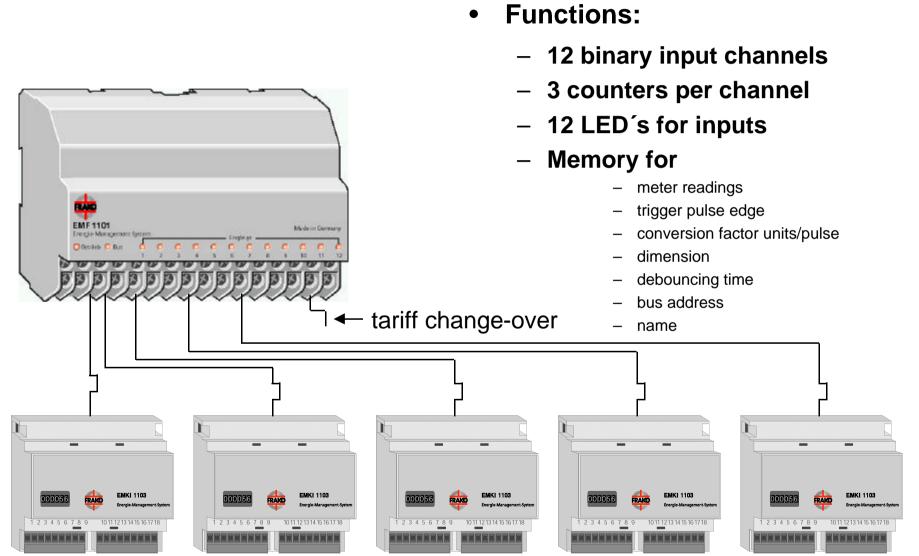

Visualisation Software EM-Graph General Settings

Connection via Font size C EMZ Display 30 ♥ C EMP Display 30 ♥ EML Printer 50 ♥ Interface COM1 C COM1 Diagrams C COM2 Averaging O ♥ Sgtup Data points 400 ♥ Sgtup Begister EMGRAPH	Diagram settings	Display	General Settings	<u>U</u> tilities
<u>R</u> egister EMGRAPH	C EMZ © EMP C EML Interface C COM1 C COM2 © COM3	Display 30 🐥 Printer 50 🐥 Diagrams T Averaging	✓ Show help text ✓ Display diagrams at stat ✓ Check if instrument acc ✓ Variable axis scaling Printer Setup	
	© COM3	☐ Averaging	Sgtup] BRAPH


Visualisation Software EM-Graph Power Factor Display

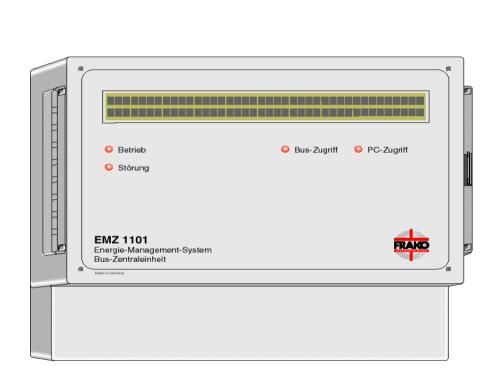

Power Meter EMKI1101/1103

Metering and Status Report Unit EMF 1101



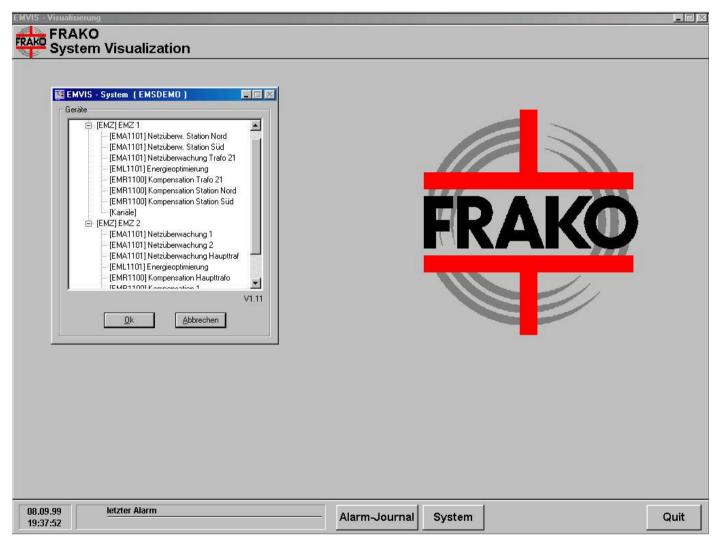
- Objectives:
 - Continues puls sampling independently from bus connection
 - Saves counts in case of power failures
 - Meter counts can be pre-set
 - Counter value is 5 byte on each counting port
 - 12 ports
 - Supplies power for external transformers
 - Channel 12 for HT/LT switching

Metering and Status Report Unit EMF 1101



Energy Management

Bus Central Unit EMZ 1200 S, M, L, XL



- Data storage and interface:
 - Display of time, date
 - Remaining storage capacity
 - Memory capacity: 100 days
 - Serials RS 232 and RS 485
 - Parallel interface (Centronics)
 - Built-in flash EPROM
 - Alarm messages via printer
 - Programmable alarm relay

EMVIS Energy Management Visualization Software

EMVIS Mains Monitoring

_ [] ×

act.

207 A

241 A

226 A

6.2 %

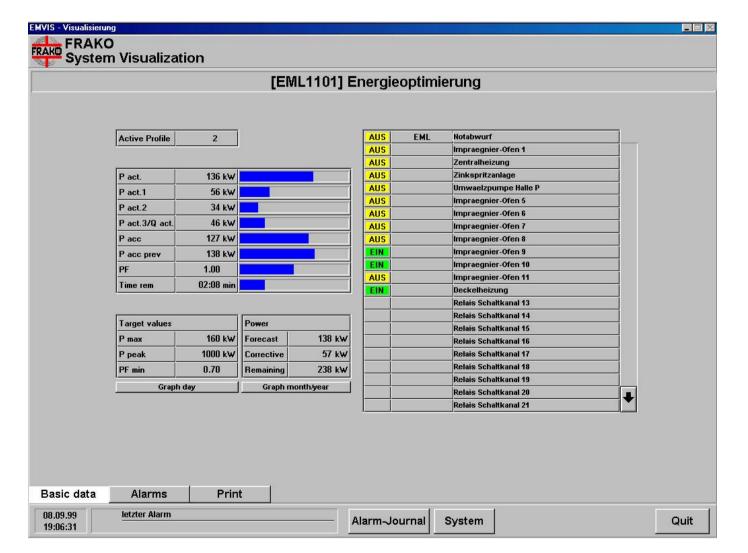
act.

max

228 A

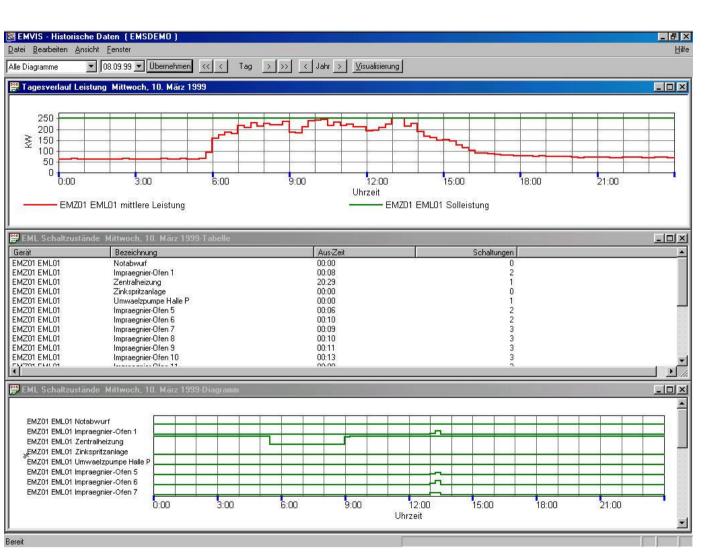
249 A

235 A


max

16.9 %

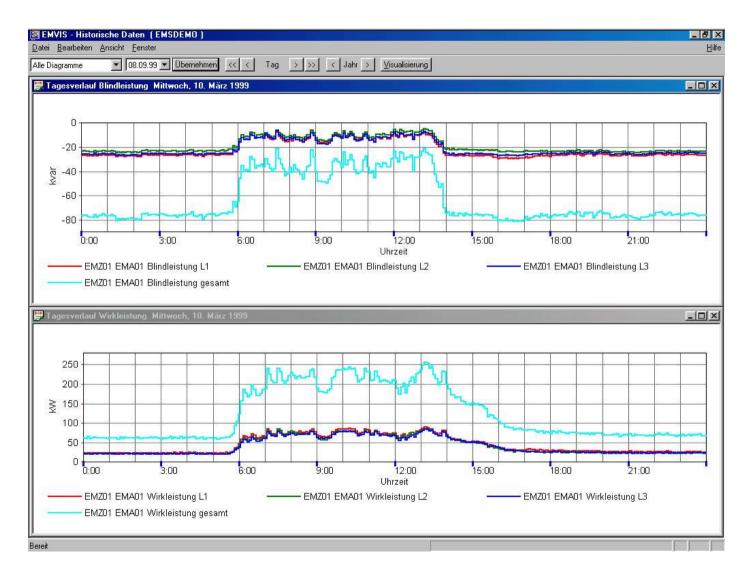
			[EMA1	101] Ne	tzüberw	/. Sta	tion Nor	ď
Vrms	Graph	380 V	act.	min	max	Irms	Graph	250 A
L1/L2			390 V	380 V	412 V	L1		
L2/L3			401 V	385 V	415 V	L2		
in the second se			400 V	381 V	410 V	L3		
L3/L1	6 P.							
L3/L1	ind. Grap	b cap.	act.	min	max			15.0 %


Total	Graph	act.	f	50.0 Hz	V dist.	Graph	10.0 %	act.	max
S	230 kVA-	155 kVA	UfN	act.	L1			6.9 %	8.8 %
160 kW			L1/N	220 V	L2			6.1 %	6.8 %
Р		146 k₩	L2/N	216 V	L3			5.7 %	6.5 %
Q	55 kvar–	52 kvar	The second se	219 V		[]			
2			· ·		l dist.	Graph	%	act.	max
Temp.	Graph	act.	min	max	L1			10.5 %	10.8 %
Trafoke	rn	95 °C	74 °C	106 °C	L2			11.4 %	11.5 %
Trafost	ation	35 °C	24 °C	68°C	L3			10.0 %	11.0 %

EMVIS Maximum Demand Control

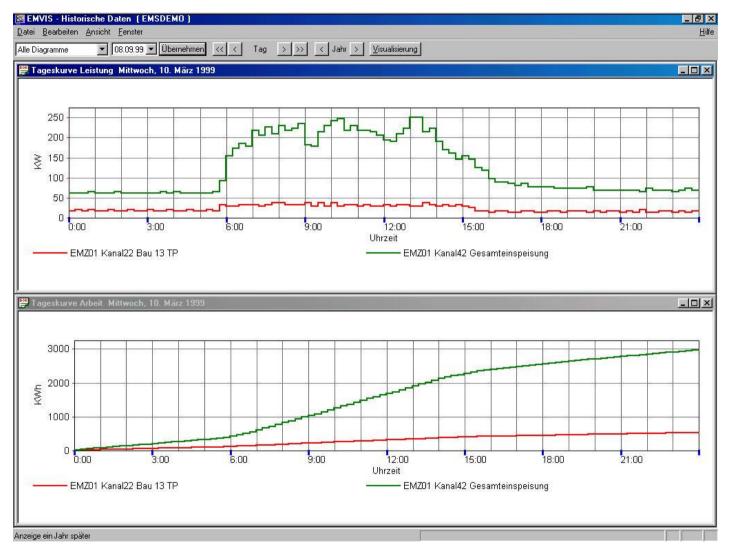
EMVIS Maximum Demand Control

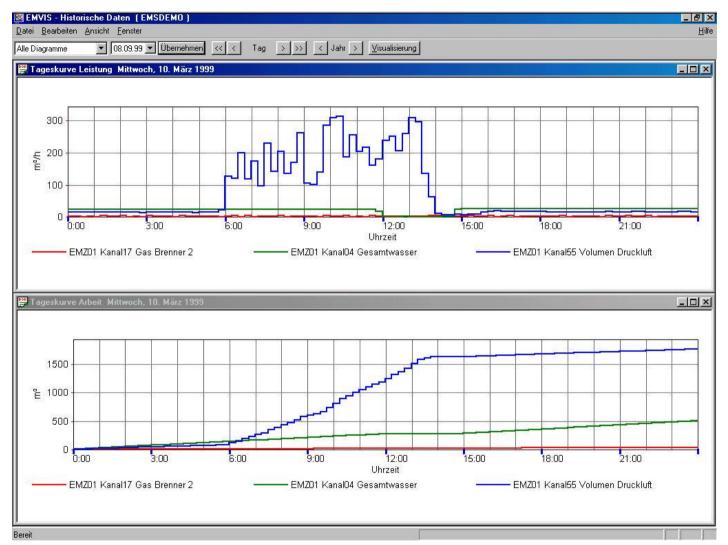
EMVIS Maximum Demand Control


EMVIS Compensation

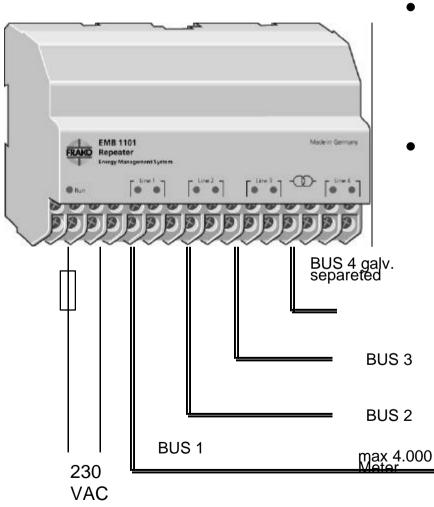
		remr1 ⁻	1001 K	Comper	nsat	ion T	rafo 21	
		L						
1							11	
Active profile	<u></u>					Stage	Reactive power	
Graph					1		25 kvar	
Target PF	0.96 ind		1.0	cap	2	<u></u> +⊦	25 kvar	
Actual PF	0.95 ind	ind	1.0	cap	3		50 kvar	
in use	17 %				4		50 kvar	
V_	378 V				5		50 kvar	
Graph					6		50 kvar	
V dist.	4.2 %				7		50 kvar	
V 05	4.5 %				8		50 kvar	
V 07	3.9 %				9		20 Second Se	
V 11	2.2 %				10		50 kvar	
V 13	0.6 %				11		0 kvar	
					12		() kvar	
I active	189 A							
I reactive	48 A							


EMVIS Mains Monitoring

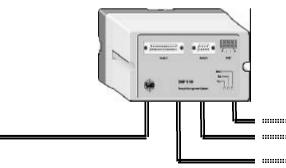

EMVIS Mains Monitoring



EMVIS Energy Meters



EMVIS Metering of Media



Repeater EMB 1101

- Bus structure with limitless modularity
 - Bus faults are detected, reported
 - and logged. The individual devices continue to operate selfsufficiently
- **Application data:**
 - Length up to 1.5 km _
 - With bus couplers up to 15 km
 - 120 devices can be connected
 - Distance with two bus couplers up _ to 4 km.

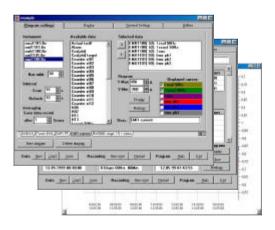
FRAKO Energie Management System (EMS)

- 1. Basics of Energy Management (EM)
- 2. Mains Monitoring
- 3. Maximum Demand Control (Load Shedding)
- 4. Power Factor Correction with FRAKO EMS
- 5. Additional Components and Software
- 6. FRAKO Energy Management Sets
 - Mains Monitoring Set
 - Maximum Demand Set
 - Maximum Demand Set +
- 7. Integrated FRAKO Energy Management
 - Various installations utilizing the FRAKO Starkstrombus™ Mains Monitoring / Load Shedding / Metering electrical energy and other energies and media
- 8. Questions & Answers

6. FRAKO Energy Management Sets

Mains Monitoring Set Maximum Demand Set Maximum Demand Set +

Mains Monitoring Set



- consisting of
 - 1 Mains Monitoring Instrument EMA 1101
 - 1 Communication Interface
 - 1 Visualization Software

EMP 1100 EM-Graph

Maximum Demand Sets

- for 4 channels, consisting of
 - 1 Maximum Demand Controler
 - 1 Optimizing Software for PC-Operation
- for 12 channels, consisting of
 - 1 Maximum Demand Controler
 - 1 Optimizing Software for PC-Operation
 - 1 Extention Module
- for 20 channels, consisting of
 - 1 Maximum Demand Controler
 - 1 Optimizing Software for PC-Operation
 - 2 Extention Modules

EML 1101S OPT-SW

EMD 1101

EML 1101S

OPT-SW

EMD 1101

EML 1101S OPT-SW

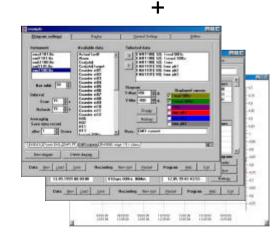
Maximum Demand Sets+

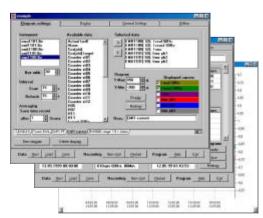
- created like the Maximum Demand Sets plus
 - 1 Visualization Software

4 Channels

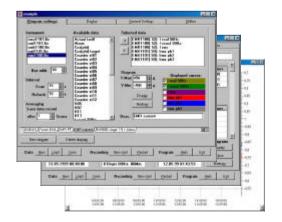
Lots 17 Robot Lots 7 Toronto

EM-Graph




12 Channels

+


20 Channels

Energy Management Packages

					Number of sets ordered:			
					1	5	10	
Mains Monitoring Set, consisting of								
	-	1 EMA 1101			2.630,00	2.370,00	2.100,00	
	-	1 EMP 1100						
	-	1 EMGraph						
				of				
Max	imuı	m Demand Set	, consisting of	channels				
	-	1 EML 1101S		4	1.980,00	1.760,00	1.590,00	
	-	1 OPT-SW	- 1 EMD 1101	12	3.080,00	2.740,00	2.470,00	
			- 2 EMD 1101	20	4.700,00	4.180,00	3.760,00	
Maximum Demand Set +, consisting of								
	-	1 EML 1101S		4	2.780,00	2.470,00	2.230,00	
	-	1 OPT-SW	- 1 EMD 1101	12	3.880,00	3.450,00	3.110,00	
+	-	1 EMGraph	- 2 EMD 1101	20	5.500,00	4.890,00	4.400,00	
					Net Pricing	g in DM pei	[·] Set	

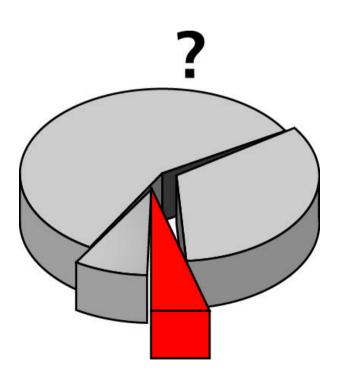
FRAKO Energie Management System (EMS)

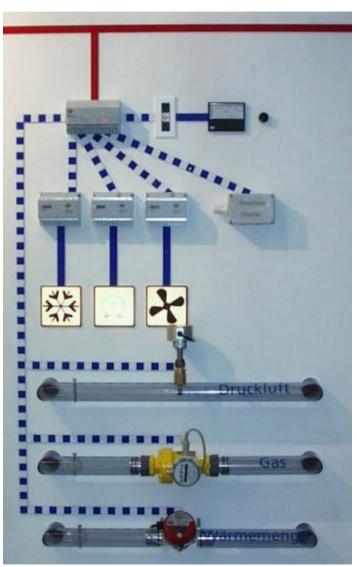
- 1. Basics of Energy Management (EM)
- 2. Mains Monitoring
- 3. Maximum Demand Control (Load Shedding)
- 4. Power Factor Correction with FRAKO EMS
- 5. Additional Components and Software
- 6. FRAKO Energy Management Sets
 - Mains Monitoring Set
 - Maximum Demand Set
 - Maximum Demand Set +
- 7. Integrated FRAKO Energy Management

Various installations utilizing the FRAKO Starkstrombus™ Mains Monitoring / Load Shedding / Metering electrical energy and other energies and media

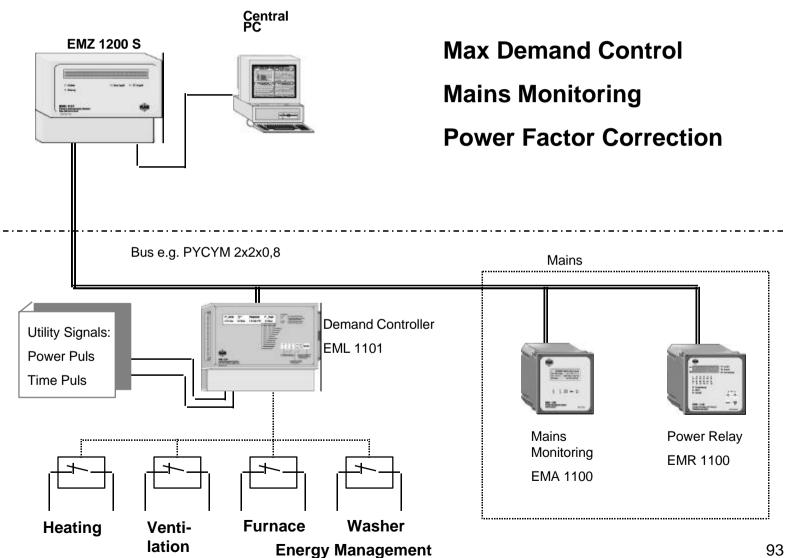
• 8. Questions & Answers

7. Integrated FRAKO Energy Management


Various installations utilizing the FRAKO Starkstrombus[™]


Energy Management

Samples of Integrated FRAKO EMS


Transparency of interrelations
 releases potential for savings

Energy Management

Summary (1)

- Reactive power compensation enables you to eliminate costs for reactive power
- Maximum Demand Control reduces costs for peak performance
- Energy Management systems originally designed for electrical power are also capable of mapping metering data and status information of other media

Summary (2)

- Automatic recording, documentation and graphical processing of energy data create transparency
- Operational reliability increases
- Insight into and awareness of operational process is created
- It is not only possible to take cost-effective measures on specific processes but also to evaluate the results.

It's all about saving your money

FRAKO Power Factor Correction and Energy Management

Energy Management

FRAKO Energie Management System (EMS)

- 1. Basics of Energy Management (EM)
- 2. Mains Monitoring
- 3. Maximum Demand Control (Load Shedding)
- 4. Power Factor Correction with FRAKO EMS
- 5. Additional Components and Software
- 6. FRAKO Energy Management Sets
 - Mains Monitoring Set
 - Maximum Demand Set
 - Maximum Demand Set +
- 7. Integrated FRAKO Energy Management
 - Various installations utilizing the FRAKO Starkstrombus™ Mains Monitoring / Load Shedding / Metering electrical energy and other energies and media
- 8. Questions & Answers

8. Questions & Answers

Energy Management